126 research outputs found

    Expression of an endotoxin-free S-layer/allergen fusion protein in gram-positive Bacillus subtilis 1012 for the potential application as vaccines for immunotherapy of atopic allergy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic fusion of the major birch pollen allergen (Bet v1) to bacterial surface-(S)-layer proteins resulted in recombinant proteins exhibiting reduced allergenicity as well as immunomodulatory capacity. Thus, S-layer/allergen fusion proteins were considered as suitable carriers for new immunotherapeutical vaccines for treatment of Type I hypersensitivity. Up to now, endotoxin contamination of the fusion protein which occurred after isolation from the gram-negative expression host <it>E. coli </it>had to be removed by an expensive and time consuming procedure. In the present study, in order to achieve expression of pyrogen-free, recombinant S-layer/allergen fusion protein and to study the secretion of a protein capable to self-assemble, the S-layer/allergen fusion protein rSbpA/Bet v1 was produced in the gram-positive organism <it>Bacillus subtilis </it>1012.</p> <p>Results</p> <p>The chimaeric gene encoding the S-layer protein SbpA of <it>Lysinibacillus sphaericus </it>CCM 2177 as well as Bet v1 was cloned and expressed in <it>B. subtilis </it>1012. For that purpose, the <it>E. coli-B. subtilis </it>shuttle vectors pHT01 for expression in the <it>B. subtilis </it>cytoplasm and pHT43 for secretion of the recombinant fusion protein into the culture medium were used. As shown by western blot analysis, immediately after induction of expression, <it>B. subtilis </it>1012 was able to secret rSbpA/Bet v1 mediated by the signal peptide amyQ of <it>Bacillus amyloliquefaciens</it>. Electron microscopical investigation of the culture medium revealed that the secreted fusion protein was able to form self-assembly products in suspension but did not recrystallize on the surface of the <it>B. subtilis </it>cells. The specific binding mechanism between the N-terminus of the S-layer protein and a secondary cell wall polymer (SCWP), located in the peptidoglycan-containing sacculi of <it>Ly. sphaericus </it>CCM 2177, could be used for isolation and purification of the secreted fusion protein from the culture medium. Immune reactivity of rSbpA/Bet v1 could be demonstrated in immunoblotting experiments with Bet v1 specific IgE containing serum samples from patients suffering birch pollen allergy.</p> <p>Conclusions</p> <p>The impact of this study can be seen in the usage of a gram-positive organism for the production of pyrogen-free self-assembling recombinant S-layer/allergen fusion protein with great relevance for the development of vaccines for immunotherapy of atopic allergy.</p

    Correlation of sensitizing capacity and T-cell recognition within the Bet v 1 family

    Get PDF
    BackgroundBet v 1 is the main sensitizing allergen in birch pollen. Like many other major allergens, it contains an immunodominant T cell–activating region (Bet v 1142-156). Api g 1, the Bet v 1 homolog in celery, lacks the ability to sensitize and is devoid of major T-cell epitopes.ObjectiveWe analyzed the T-cell epitopes of Mal d 1, the nonsensitizing Bet v 1 homolog in apple, and assessed possible differences in uptake and antigen processing of Bet v 1, Api g 1, and Mal d 1.MethodsFor epitope mapping, Mal d 1–specific T-cell lines were stimulated with overlapping synthetic 12-mer peptides. The surface binding, internalization, and intracellular degradation of Bet v 1, Api g 1, and Mal d 1 by antigen-presenting cells were compared by using flow cytometry. All proteins were digested with endolysosomal extracts, and the resulting peptides were identified by means of mass spectrometry. The binding of Bet v 1142-156 and the homologous region in Mal d 1 by HLA class II molecules was analyzed in silico.ResultsLike Api g 1, Mal d 1 lacked dominant T-cell epitopes. The degree of surface binding and the kinetics of uptake and endolysosomal degradation of Bet v 1, Api g 1, and Mal d 1 were comparable. Endolysosomal degradation of Bet v 1 and Mal d 1 resulted in very similar fragments. The Bet v 1142-156 and Mal d 1141-155 regions showed no striking difference in their binding affinities to the most frequent HLA-DR alleles.ConclusionThe sensitizing activity of different Bet v 1 homologs correlates with the presence of immunodominant T-cell epitopes. However, the presence of Bet v 1142-156 is not conferred by differential antigen processing

    Assessing Protein Immunogenicity with a Dendritic Cell Line-Derived Endolysosomal Degradome

    Get PDF
    Background: The growing number of novel candidate molecules for the treatment of allergic diseases imposed a dramatic increase in the demand for animal experiments to select immunogenic vaccines, a pre-requisite for efficacy. Because no in vitro methods to predict the immunogenicity of a protein are currently available, we developed an in vitro assay that exploits the link between a proteins immunogenicity and its susceptibility to endolysosomal proteolysis. Methodology: We compared protein composition and proteolytic activity of endolysosomal fractions isolated from murine bone marrow- and human blood- derived dendritic cells, and from the dendritic cell line JAWS II. Three groups of structurally related antigen variants differing in their ability to elicit immune responses in vivo (Bet v 1.0101 and Bet v 1.0401, RNases A and S, holo- and apo-HRP) were subjected to in vitro simulated endolysosomal degradation. Kinetics and patterns of generated proteolytic peptides were evaluated by gel electrophoresis and mass spectrometry. Results: Antigens displaying weak capacity of T cell priming in vivo were highly susceptible to endolysosomal proteases in vitro. As proteolytic composition, activity, and specificity of endolysosomal fractions derived from human and murine dendritic cells were comparable, the JAWS II cell line could be used as a substitute for freshly isolated human or murine cells in in vitro degradation assays. Conclusions: Endolysosomal fractions prepared from the JAWS II cell line provide a reliable tool for in vitro estimation of protein immunogenicity. The rapid and simple assay described here is very useful to study the immunogenic properties of a protein, and can help to replace, reduce, and refine animal experiments in allergy research and vaccine development in general

    Effect of the 3q26-coding oncogene SEC62 as a potential prognostic marker in patients with ovarian neoplasia

    Get PDF
    With approximately 220,000 newly diagnosed cases per year, ovarian cancer is among the most frequently occurring cancers among women and the second leading cause of death from gynecological malignancies worldwide. About 70% of these cancers are diagnosed in advanced stages (FIGO IIB–IV), with a 5-year survival rate of 20–30%. Due to the poor prognosis of this disease, research has focused on its pathogenesis and the identification of prognostic factors. One possible approach for the identification of biological markers is the identification of tumor entity-specific genetic “driver mutations”. One such mutation is 3q26 amplification in the tumor driver SEC62, which has been identified as relevant to the pathogenesis of ovarian cancer. This study was conducted to investigate the role of SEC62 in ovarian malignancies. Patients with ovarian neoplasias (borderline tumors of the ovary and ovarian cancer) who were treated between January 2007 and April 2019 at the Department of Gynecology and Obstetrics, Saarland University Hospital, were included in this retrospective study. SEC62 expression in tumor tissue samples taken during clinical treatment was assessed immunohistochemically, with the calculation of immunoreactivity scores according to Remmele and Stegner, Pathologe, 1987, 8, 138–140. Correlations of SEC62 expression with the TNM stage, histological subtype, tumor entity, and oncological outcomes (progression-free and overall survival) were examined. The sample comprised 167 patients (123 with ovarian cancer and 44 with borderline tumors of the ovary) with a median age of 60 (range, 15–87) years. At the time of diagnosis, 77 (46%) cases were FIGO stage III. All tissue slides showed SEC62 overexpression in tumor cells and no SEC62 expression in other cells. Median immunoreactivity scores were 8 (range, 2–12) for ovarian cancer and 9 (range, 4–12) for borderline tumors of the ovary. Patients with borderline tumors of the ovary as well as patients with ovarian cancer and an immunoreactive score (IRS) ≤ 9 showed an improved overall survival compared to those presenting with an IRS score >9 (p = 0.03). SEC62 seems to be a prognostic biomarker for the overall survival of patients with ovarian malignancies

    100 Years of Immunotherapy: The Monaco Charter

    Get PDF
    Aims of the Monaco Charter: (1) to present the current evidence on the efficacy and safety of allergen-specific immunotherapy (SIT) and to address the reasons for its underuse in clinical practice; (2) to develop strategies to increase the awareness about the benefits and the hazards of SIT in allergic patients, lay public and healthcare professionals not trained in allergy, and (3) to make SIT accessible and affordable to eligible patient

    Prevention of Birch Pollen-Related Food Allergy by Mucosal Treatment with Multi-Allergen-Chimers in Mice

    Get PDF
    Among birch pollen allergic patients up to 70% develop allergic reactions to Bet v 1-homologue food allergens such as Api g 1 (celery) or Dau c 1 (carrot), termed as birch pollen-related food allergy. In most cases, specific immunotherapy with birch pollen extracts does not reduce allergic symptoms to the homologue food allergens. We therefore genetically engineered a multi-allergen chimer and tested if mucosal treatment with this construct could represent a novel approach for prevention of birch pollen-related food allergy.BALB/c mice were poly-sensitized with a mixture of Bet v 1, Api g 1 and Dau c 1 followed by a sublingual challenge with carrot, celery and birch pollen extracts. For prevention of allergy sensitization an allergen chimer composed of immunodominant T cell epitopes of Api g 1 and Dau c 1 linked to the whole Bet v 1 allergen, was intranasally applied prior to sensitization.Intranasal pretreatment with the allergen chimer led to significantly decreased antigen-specific IgE-dependent β-hexosaminidase release, but enhanced allergen-specific IgG2a and IgA antibodies. Accordingly, IL-4 levels in spleen cell cultures and IL-5 levels in restimulated spleen and cervical lymph node cell cultures were markedly reduced, while IFN-γ levels were increased. Immunomodulation was associated with increased IL-10, TGF-β and Foxp3 mRNA levels in NALT and Foxp3 in oral mucosal tissues. Treatment with anti-TGF-β, anti-IL10R or anti-CD25 antibodies abrogated the suppression of allergic responses induced by the chimer.Our results indicate that mucosal application of the allergen chimer led to decreased Th2 immune responses against Bet v 1 and its homologue food allergens Api g 1 and Dau c 1 by regulatory and Th1-biased immune responses. These data suggest that mucosal treatment with a multi-allergen vaccine could be a promising treatment strategy to prevent birch pollen-related food allergy

    The 3q Oncogene SEC62 Predicts Response to Neoadjuvant Chemotherapy and Regulates Tumor Cell Migration in Triple Negative Breast Cancer

    Get PDF
    In the absence of targeted treatment options, neoadjuvant chemotherapy (NACT) is applied widely for triple-negative breast cancer (TNBC). Response to NACT is an important parameter predictive of oncological outcomes (progression-free and overall survival). An approach to the evaluation of predictive markers enabling therapy individualization is the identification of tumor driver genetic mutations. This study was conducted to investigate the role of SEC62, harbored at 3q26 and identified as a driver of breast cancer pathogenesis, in TNBC. We analyzed SEC62 expression in The Cancer Genome Atlas database, and immunohistologically investigated SEC62 expression in pre- and post-NACT tissue samples from 64 patients with TNBC treated at the Department of Gynecology and Obstetrics/Saarland University Hospital/Homburg between January 2010 and December 2018 and compared the effect of SEC62 on tumor cell migration and proliferation in functional assays. SEC62 expression dynamics correlated positively with the response to NACT (p ≤ 0.01) and oncological outcomes (p ≤ 0.01). SEC62 expression stimulated tumor cell migration (p ≤ 0.01). The study findings indicate that SEC62 is overexpressed in TNBC and serves as a predictive marker for the response to NACT, a prognostic marker for oncological outcomes, and a migration-stimulating oncogene in TNBC
    corecore